
Proceedings of the 2013 Winter Simulation Conference 
R. Pasupathy, S.-H. Kim, A. Tolk, R. Hill, and M. E. Kuhl, eds. 

 

 

 
 

RUNTIME EXECUTION MANAGEMENT OF DISTRIBUTED SIMULATIONS 
 
 

Keith Snively 
 

Richard Leslie 

Dynamic Animation Systems, Inc. 
Fairfax, VA, USA 

Kinex Inc. 
Manassas, VA, USA 

  
 

Chris Gaughan  
 

Army Research Laboratory  
Human Research and Engineering Directorate 
Simulation and Training Technology Center  

Orlando, FL, USA 
 
 
ABSTRACT 

Distributed Modeling and Simulation (M&S) provides benefit from the ability to bring together a large 
number of simulations, across a network, to fulfill a specific requirement.  However, this capability comes 
with the costs and complexity of coordinating all of the computing platforms for the startup, execution, 
shutdown and artifact collection of the simulation execution.  Typically, an exercise event also requires 
many iterations of the simulation execution, necessitating the ability to perform these tasks in an efficient 
and repeatable manner.  This paper discusses an approach to handle the runtime execution of a simulation 
exercise as part of the Executable Architecture Systems Engineering (EASE) research project.  We dis-
cuss the methodologies used to control the overall execution of a distributed simulation as well as control 
the individual applications involved.  We further present some of the current use cases for this approach 
and lessons identified. 

1 INTRODUCTION 

Distributed Modeling and Simulation (M&S) supports training, systems analysis and concept exploration, 
to name a few applications.  Towards this end, composing large, distributed simulation events can be a 
complex task.  The simulation engineer must design or choose a scenario that meets the desired functional 
capabilities and then determine the simulations that meet those criteria.  Assets must be acquired to sup-
port each simulation application and process.  The assets may be computers located in a simulation lab, 
virtual machines or a combination of both.  Proper network connectivity and capability must also be en-
sured.  The simulation engineer must also determine startup, execution and shutdown procedures as well 
as how artifacts will be collected for each iteration. 

To lower the human and material costs of leveraging M&S, the U.S. Army  Research  Laboratory 
(ARL) Human Research and Engineering Directorate (HRED) Simulation and Training Technology Cen-
ter (STTC) is conducting the Executable Architecture Systems Engineering (EASE) research project.  The 
goal of the project is to provide an executable architecture based on systems engineering for M&S.  The 
approach allows users to traverse systems engineering information to compose and execute simulation 
scenarios that address their analysis or training goals (Gallant, Metevier and Gaughan 2011). 

The EASE architecture consists of a number of components.  The Software Design Description 
(SDD) captures the systems engineering information on the available simulation applications, their capa-
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bilities and how they interoperate in a simulation environment.  The SDD also allows the system engi-
neering user to add new simulation applications (Beauchat et al. 2012). 

The EASE Interview System allows the user to traverse captured system engineering information to 
select and compose a simulation system.  The user is presented with a list of options based upon scenario 
criteria and functional capabilities and has the ability to customize components of the scenario (Gallogly 
et. al. 2012).  Additional advanced capabilities allow the user to inject custom properties and create surro-
gates to fill in specific capabilities. 

Once the scenario has been designed and the components chosen, The EASE Deployment Manage-
ment System determines the necessary assets for execution and deploys software and configuration files.  
It employs Platform as a Service (PaaS) to utilize virtual and hardware assets in support of a simulation 
exercise (Murphy, Diego and Gallant 2011).  Its tasking service then determines how and when to run a 
simulation execution. 

Finally, the EASE Coordinator is responsible for the actual execution of the simulation exercise.  The 
Coordinator handles the Time Sequence of Events provided by the tasking system and controls the 
launch, initialization, shutdown and cleanup of each process.  The Coordinator is also responsible for pro-
gression of the overall simulation execution ensuring all processes perform the necessary tasks at the 
proper time.  This paper will discuss the EASE Coordinator in detail. 

2 COORDINATOR 

2.1 Problem Space 

The runtime execution of a large distributed simulation can be a complex task.  Orderly management of 
the startup, execution, shutdown and data collection tasks are required to support iterations of a simula-
tion run.  In addition, unanticipated error conditions must be monitored to determine when an iteration 
should be terminated and restarted.  Often these tasks are handled manually.  An example is the US Army 
Training and Doctrine Command (TRADOC) Maneuver Support Center of Excellence (MSCoE) in sup-
porting the Battle Laboratory Collaborative Simulation Environment (BLCSE) experiments.  In the cur-
rent exercise, MSCoE will run three clusters of OneSAF simulators, where each cluster consists of a 
Battlemaster station, several backend simulation cores and an interoperability component that connects to 
a High Level Architecture (HLA) Run-Time Infrastructure (RTI) for communicating with other laborato-
ries (IEEE 2000).  This configuration requires support personnel running processes on roughly two dozen 
host machines.  In addition, scenarios must be loaded and initialized on the three Battlemaster hosts.  
Once complete, all the application processes must be shut down and any data artifacts collected.  The 
support staff must also monitor the simulations to make sure applications are restarted if a fault occurs.  In 
order to support this exercise, MSCoE is currently bringing in extra staff.  In addition, the process can be 
subject to human error in starting the required processes in the proper order with the required configura-
tion. 

In other cases, the application management is more automated.  The initial version of the EASE De-
ploy Management System used a sequence of events based the Quartz scheduler (Terracotta 2013).  This 
works well for process execution and sequencing them in time.  Unfortunately, it lacks an ability to react 
to external events, such as a user deciding to shut down the execution or the simulation reaching a given 
objective.  It is also harder to handle application monitoring and fault recovery where some startup steps 
may need to be repeated. 

2.2 Applying State Charts 

To improve the automation for the management of a simulation exercise, the Coordinator utilizes Harel 
State Charts to describe the execution of a simulation and its component applications.  Harel State Tables 
allow for hierarchically nested states and include associated activities for states and transitions (Harel 
1987).  They also form the basis of the Unified Modeling Language (UML) State-Diagrams (OMG 2009).  
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State charts readily lend themselves to description of distributed simulations and its components and are 
used within HLA specifications.  The Coordinator uses a State Chart XML (SCXML) to represent each 
state chart.  SCXML specifies a generic state-machine execution based on Harel State Tables expressed in 
XML (W3C 2012).  SCXML is an evolving standard supported by The World Wide Web Consortium 
(W3C).  There are numerous software products which provide the execution of SCXML documents sup-
porting a variety of programming languages.  Currently, the Coordinator uses the Apache Commons 
SCXML library as the state machine engine.  The library is written in Java and provides numerous exten-
sion points, including the ability to add custom actions, event transports and semantics. 

Within the Coordinator, a series of state charts are used to represent the simulation execution and 
each process participating in the execution.  Each state chart, represented as SCXML, executes asynchro-
nously within an SCXML engine.  Custom extensions to the Apache Commons SCXML library allow for 
the spawning of other SCXML engines and exchanging of external events with these other SCXML en-
gines.  The events may be sent between engines within the same process or across a network.  The events 
can be used as triggers to transition to new states, set internal data or convey error conditions.  Figure 1 
depicts the execution of the state machines within the Coordinator architecture. 

 
Figure 1:  Coordinator SCXML engines 

As depicted, the overall execution of the simulation scenario is represented as an SCXML document.  
The execution SCXML specifies the available states for the execution and the criteria for transitioning be-
tween the states.  The execution SCXML engine sends events to and receives events from the components 
SCXML engines.  These event exchanges progress the execution and components through their respective 
states.  Error events may also be sent and handled as appropriate for the execution and error condition en-
countered.  Figure 2 shows a high level sample execution where high level states are provided based upon 
the requirements of the previous section. 

A number of the states are composite, namely Startup, Execute, Shutdown, CollectData and Halt.  
Each of these composite states invokes a sub-SCXML engine which executes the behavior for that state.  
These sub-SCXML engines run to completion before the state under which they are invoked transitions, 
much like a composite state.  The customizable behavior given in the Coordinator XML for the simula-
tion execution lies within these sub-SCXML engines.  Using a sub-SCXML specification simplifies the 
respective files. 

In addition, each process participating in an execution, referred to as a component, is represented by 
an SCXML document.  There are three types of components in the Coordinator:  application, environment 
and process. 
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Application components designate simulation applications, such as the OneSAF Force-on-Force sim-
ulation (Wittman and Harrison 2001), that directly participate in an execution.  Generally, the application 
participates through the full course of a simulation execution run. 

Environment components refer to components that are required to create the simulation execution in-
frastructure.  An example of an environment component would be a centralized process to support the 
communication protocol, such as HLA or TENA (Powell and Noseworthy 2012).  Typically these would 
be the first set of processes launched for an execution run and the last to be shutdown. 

 

 
Figure 2:  Simulation execution SCXML 

Process components are generic processes that run during a simulation execution.  These can be tran-
sient or long term processes.  An example would be the execution of a script that transforms data collect-
ed during an execution run.  Another example would be executing an application that sends commands to 
the simulation execution and then exits, such as an Advanced Testing Capability (ATC) test case (Hurt et 
al. 2006).  Figure 3 shows an example of the application SCXML.  

The Initialize, LoadScenario, Execute, Shutdown and Halt states are compound.  The actions per-
formed in these states may be customized behavior in the Coordinator XML. 

2.3 SCXML Generation  

The State Chart representations shown in the previous section, while powerful, are also complex.  There-
fore, these representation are templatized and generated from a simplified XML input designated as the 
Coordinator.  This Coordinator XML file, supplied by the user or invoking process, specifies the compo-
nents and their behavior in the execution and the behavior of the execution itself.  The Coordinator uses 
XSL Transform (XSLT) 2.0 to generate the required SCXML documents for an execution from the Coor-
dinator XML (W3C  2007).  Additional configuration information is also generated from the input as re-
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quired by the Coordinator for executing the simulation.  Finally, the input may specify addresses to post 
status and results of execution. 

Within the Coordinator XML, a set of actions can be specified for each available high level state of 
the component.  Similarly, for the execution, a set of actions to be performed can be specified for each 
high level execution state.  The high level states available for components and the execution are deter-
mined by the template SCXML documents and are based upon the role.  Below is an excerpt for an appli-
cation specification. 

 
Figure 3: Application SCXML 

 
<!-- 
         application: Specify behavior of a application component, e.g. a 
         federate. 
         @id:  A unique identifier for this component 
--> 
 <application id="sampleApp_1"> 
      <launch> 
          <sshStart host=”machineA” 
                    dir="/usr/local/ease/coordinator/examples/scripts" 
                    script="sampleAppStart.sh" /> 
      </launch> 
      <initialize> 
      </initialize> 
      <execute> 
      </execute> 
      <shutdown> 
          <sshStop dir="/usr/local/ease/coordinator/examples/scripts" 
                   script="sampleAppStop.sh"/> 
      </shutdown> 
      <halt> 
          <sshStop dir="/usr/local/ease/coordinator/examples/scripts" 
                   script=" sampleAppStop.sh "/> 
      </halt> 
    </application> 
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In this case, an application is launched on machineA using the script sampleAppStart.sh located in the 
specified directory.  Additional login credentials may be specified, if necessary, with pre-set Secure Shell 
(SSH) keys.  No behavior is specified for the initialize and execute states of the application. 

2.4 Processes and Services 

The Coordinator Architecture provides two primary components to implement its functionality.  The cen-
tral Coordinator process is the entry point to the Coordinator and is launched directly by the user.  It is re-
sponsible for generating the SCXML, providing configuration information, executing the Simulation Ex-
ecution SCXML and managing the Agents.  The Agent process is responsible for interacting with a 
controlled process and executing a component SCXML.  Each Agent corresponds to a single component.  
The Coordinator and Agents interact through a RESTful interface and SCXML events (Fielding 2000).  
Figure 4 shows a diagram of the primary processes and responsibilities. 

 

 
Figure 4:  Coordinator and agent processes 

The Coordinator provides the aforementioned RESTful interface for Agents to access configuration 
information and files.  The Agent process, upon startup, makes a request for the list of configuration files 
it needs from the Coordinator.  The Coordinator maintains a list of files for each Agent stored by a unique 
Agent Identification that is specified in the XML provided to the Coordinator by the Deployment Man-
agement System, and provided to the Agent as an argument when it is launched.  The Agent then does 
GETs for each file required.  Once all the files are received, the Agent opens a websocket to the Coordi-
nator.  The websocket is both persistent and bidirectional and used to exchange state machine events be-
tween the Coordinator and the Agent.  This removes the need for the Agent to listen on an endpoint to re-
ceive events from the Coordinator, simplifying the host firewall configuration.  Once the websocket is 
open, the Agent starts its state machine,  which launches and controls the participant. 

The primary responsibility of the Agent is to execute the SCXML for a component for control of a 
process.  The Agent monitors the status of the controlled process as part of its execution.  Having the 
Agent as a separate process from the central Coordinator allows the Agent to be collocated with the con-
trolled process, allowing for greater level of interaction between the Agent and process, including Graph-
ical User Interface (GUI) control.  The Agent libraries contain all dependencies for running and control-
ling processes, which reduces the need to install additional packages on the host. 
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2.5 Process Control 

One of the problems encountered in automating a simulation execution is how to interact with the pro-
cesses and applications involved.  Processes may be as simple as executing a launch command or may re-
quire additional console or GUI interaction on the part of the user.  The capabilities for scripting process 
interaction will dictate the level to which the simulation can be automated. 

2.5.1 Shell and Batch Scripts via SSH 

A straightforward mechanism to control and automate processes is through shell or batch scripts.  Devel-
opers often provide scripts as a simple mechanism to launch applications with specific configurations.  
The Agent provides the ability to directly invoke scripts at the desired state for a given component. 

The scripts are invoked through SSH, allowing the command to be run on a remote host from the as-
sociated Agent for the component.  We provide this capability using Java Secure Channel, which is a java 
implementation of SSH2 (JSCH 2012).  The SSH launch command captures the Process Identifier (PID) 
of the executing process.  This PID is then used to periodically status the process to assure that it is still 
executing.  The status allows the Agent to detect an unexpected process termination and generate error 
event as appropriate. 

Computers running Windows do not natively support SSH logon and process execution.  To provide 
this feature, the PsTools toolkit from Microsoft is used by scripts to start and status the processes.  It also 
allows processes started remotely to run with a GUI and be interactive.  In addition, a freeSSHd SSH 
server is installed to support the SSH functionality and PsTools to capture running PID. 

The Coordinator also uses the SSH command execution capability for launching the Agent processes 
themselves.  The Agent process may then execute on a remote host from the central Coordinator process 
and be collocated with the controlled process.  This collocation becomes important when performing 
more sophisticated interaction with the controlled process. 

2.5.2 Graphical Control and Jython 

Many processes that need to be controlled by the system require interaction with GUI components.  A 
novel tool which provides this interaction is Sikuli Script, which automates interaction with a GUI and 
“anything you see on the screen” (Sikuli 2010).  Sikuli is open source software under the Massachusetts 
Institute of Technology (MIT) license.  It uses Jython, python for the Java platform, as the scripting lan-
guage.  Through a combination of Image Recognition and Optical Character Recognition (OCR), it allows 
users to script interactions, such a mouse clicks, drag and drop, entering text and changing window focus.  
One or more windows may be interacted with at a time.  The Sikuli project also provides an Integrated 
Development Environment (IDE) for designing scripts. 

The Coordinator leverages Sikuli Script by providing the ability to script control of an application us-
ing Jython.  Users create a class within a module that implements an interface for executing the various 
states of the component.  Jython not only allows python scripting within the Java platform, it also pro-
vides the ability to leverage Java libraries from within those scripts (Juneau et al. 2010).  This design al-
lows users additional ways to interact with a process, including ExpectJ, a Java implementation of Expect 
for interacting with console processes.  In order for a Jython script to be used for process interaction, the 
Agent process must run on the same host and desktop as the controlled process. 

3 USE CASES AND LESSONS IDENTIFIED 

3.1 Cloud 

The EASE system supports cloud based execution (Allen, et.al.  2012).  Users can leverage virtualized 
computing and network assets to instantiate a simulation exercise, varying the application combination, 
configuration values and number of runs without end-user intervention. 
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Currently a cloud execution of EASE is available through a web interface.  Users are able to use the 
EASE interview system to select and compose a simulation execution.  In this use case, the Deployment 
Management System provides the Coordinator the execution sequence for the simulation and the number 
of iterations to perform.  For example, the scenario used for the latest EASE Hands On Training class 
consisted of a OneSAF application, four Battle Command Management Systems (BCMS) applications, an 
Advanced Testing Capability (ATC) test case, and the supporting RTI environment process (Metevier et 
al. 2009).  The Coordinator launches the simulation and provides status and state updates as the simula-
tion progresses.  Execution continues until a pre-described termination point, which in the example was a 
predetermined time limit.  The user also has the options to shut down the current run manually or abort 
the execution.  Upon shutdown, the Coordinator closes down all processes and executes the data collec-
tion routines.  The EASE interview system provides the data artifacts back to the user and archives them 
for later reference. 

In this use case, the coordinator improved the ability of the EASE system to monitor the progression 
of the simulation by receiving information of the current state of execution.  In addition, certain errors, 
such as an application terminating unexpectedly, could trigger an event to stop the execution and provide 
information on the failure back to the user sooner than waiting for the execution time period to elapse.  
Further, since shutdown of the simulation is represented as a separate state and can be transitioned 
through external events, adding the ability for the user to manually shutdown as an external event was 
straight forward. 

An issue with the current implementation is the level of detail provided in status messages.  While 
they provide information on the state of the simulation or if a particular application fails, they are not di-
rectly linked to further data on the error or application.  This situation somewhat hampers the ability to 
address the error efficiently.  In turn, improved error diagnostic and handling are part of the future devel-
opment on the project. 

3.2 Simulation Lab 

In addition to running within a fully virtual environment, the EASE prototype was installed at MSCoE 
where there is dedicated hardware with preloaded simulations for executing scenarios used to support its 
analytical mission.  The supporting infrastructure of hardware, operating systems and networks are de-
termined by the scope of the scenario and the simulations required to support these scenarios.  The 
MSCoE is also constrained by Department of Defense (DoD) Information Assurance Certification and 
Accreditation Process (DIACAP) rules, which determine available services and operating systems present 
on the hardware (DoD 2007). 

The goal of the deployment to MSCoE was to improve operations at the lab in support of its exercises 
and experimentation.  Specifically, EASE will support the MSCoE portion of the BLCSE SimEx ‘13 ex-
periment.  As discussed in section 2.1, this entails three clusters of OneSAF simulations, along with an 
application for connecting to the large HLA federation.  In this use case, the lab support personnel would 
use the EASE system to manage the simulation environment.  The Coordinator, as part of the EASE in-
stallation, would be responsible for launching and performing initialization of the simulations.  The sup-
port personnel would be responsible for determining when to shut down the simulation.  The Coordinator 
would then perform the data collection tasks. 

The EASE system was initially deployed in late February 2013 at MSCoE and later updated in June 
2013.  The support personnel were trained in the use of the system, which was demonstrated to run a 
small exercise consisting of a set of OneSAF applications and a countermine application in an HLA envi-
ronment.  The Coordinator was able to run the desired applications and repeat the execution easily as de-
sired.  The support personnel maintained control of how long the execution ran.  Any startup errors were 
quickly recognized and reported, such as one of the hardware assets being unavailable for a run. 

The experience supporting MSCoE called out the need to simplify the installation and configuration 
of the EASE system, including the Coordinator, in an existing laboratory environment.  In addition, the 
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ability to run the Coordinator as a standalone piece can be improved to allow users to leverage its capabil-
ities to manage an execution outside the EASE system. 
 Another shortcoming of the current implementation relates to the options for handling error condi-
tions.  The Coordinator allows the failure of an application to be ignored or to cause the execution to shut 
down.  Another option of automatically restarting the process should also be supported.  A possibility for 
this capability would be to introduce error recovery states for the execution state machine as well as for 
the applications.  This mechanism should allow the Systems Engineer to specify how to recover from the 
failure and is an area for future research. 

4 CONCLUSION 

The Coordinator has demonstrated an improved execution management over previous automated ap-
proaches and manual operations.  Much improvement is attributed to the advanced workflow specification 
that can be supported by State Chart representation of the execution as well as the inherit ability to react 
to internal and external events.  The event mechanism can be used in fully automated simulations to use 
more advanced criteria for an execution to move to the next stage or completion, beyond simple time se-
quencing.  The event mechanism also allows for live user control of simulation progression.  An area of 
development will be to determine how to add better fault recovery into the state charts for managing the 
simulation and its components. 

The next deployment of the EASE system will be in the simulation laboratory of the United States 
Military Academy (USMA) Department of Systems Engineering.  This deployment will leverage more 
Virtual Machines for the management system and simulation applications, simplifying the installation 
process.  While the scale of simulation scenarios for USMA is smaller than MSCoE, the experiments are 
more time constrained.  In some instances, a scenario needs to be run as part of a 50 minute class.  The 
scenarios are currently manually executed and managed, which can consume much of the class time.  The 
execution is further complicated by the fact that the composition and configuration of a scenario can 
change based on objectives.  The goal of the EASE system will be to simplify use of simulation within 
this teaching environment, allowing more focus on the objectives as opposed to the mechanics of the sim-
ulation exercise. 
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